
Chapter 51

Dynamic Programming2

Reading
1. (Thrun) Chapter 15

2. (Sutton & Barto) Chapters 3–4

3. Optional: (Bertsekas) Chapter 1 and 4

This is the beginning of Module 2, this module is about “how to act”. The3

first module was about “how to sense”. The prototypical problem in the first4

module was how to assimilate the information gathered by all the sensors into5

some representation of the world. In the next few lectures, we will assume6

that this representation is good, that it is accurate in terms of its geometry7

(small variance of the occupancy grid) and in terms of its information (small8

innovation in the Kalman filter etc.). Let us also assume that it has all the9

necessary semantics, e.g., objects are labeled as cars, buses, pedestrians etc10

(we will talk about how to do this in Module 4).11

The prototypical problem investigated in the next few chapters is how to12

move around in this world, or affect the state of this world to achieve a desired13

outcome, e.g., drive a car from some place A to another place B.14

Our philosophy about notation Material on Dynamic Programming and15

Reinforcement Learning (RL), which we will cover in the following chapters,16

contains a lot of tiny details (much more than other areas in robotics/machine17

learning). These details are usually glossed over in most treatments. In the18

interest of simplicity, other courses or most research papers these days, develop19

an imprecise notation and terminology to focus on the problem. However, these20

details of RL matter enormously when you try to apply these techniques to real-21

world problems. Not knowing all the details or using imprecise terminology22

to think about RL is unlikely to make us good at real-world applications.23

For this reason, the notation and the treatment in this chapter, and the24

following ones, will be a bit pedantic. We will see complicated notation and25

1

2

terminology for quantities, e.g., the value function, that you might see being1

written very succinctly in other places. We will mostly follow the notation2

of Dmitri Bertsekas’ book on “Reinforcement Learning and Optimal Control”3

(http://www.mit.edu/ dimitrib/RLbook.html). You will get used to the extra4

notation and it will become second nature once you become more familiar5

with the concepts.6

5.1 Formulating the optimal control problem7

Let us denote the state of a robot (and the world) by xk ∈ X ⊂ Rn at the kth
8

timestep. We can change this state using a control input uk ∈ U ⊂ Rp and9

this change is written as10

xk+1 = fk(xk, uk) (5.1)

for k = 0, 1, . . . , T − 1 starting from some initial given state x0. This is11

deterministic nonlinear dynamical system (no noise ϵ in the dynamics). We12

will let the dynamics fk also be a function of time k. The time T is some13

time-horizon up to which we care about running the system. The state-space is14

X (which we will assume does not change with time k) and the control-space15

is U .16

Recall, that we can safely assume that the system is Markov. The reason17

for it is as follows. If it is not, and say if xk+1 depends upon both xk and18

the previous step xk−1, then we can expand the state-space to write a new19

dynamics in the expanded state-space. We will follow a similar program as that20

of Module 1: we first describe very general algorithms (dynamic programming)21

for general systems (Markov Decision Processes), then specialize our methods22

to a restricted class of systems that are useful in practice (linear dynamical23

systems) and then finally discuss a very general class of systems again with24

more sophisticated algorithms (motion-planning).25

The central question in this chapter is how to pick a control uk. We
want to pick controls that lead to desirable trajectories of the system, e.g.,
results in a parallel-parked car at time T and does not collide against
any other object for all times k ∈ {1, 2, . . . , T}. We may also want to
minimize some chosen quantity, e.g., when you walk to School, you find
a trajectory that avoids a certain street with a steep uphill.

Finite, discrete state and control-space In this chapter we will only
consider problems with finitely-many states and controls, we will assume
that the state-space X and the control-space U are finite, discrete sets.

Run-time cost and terminal cost We will take a very general view of the26

above problem and formalize it as follows. Consider a cost function27

qk(xk, uk) ∈ R

http://www.mit.edu/~dimitrib/RLbook.html

3

which gives a scalar real-valued output for every pair (xk, uk). This models1

the fact that you do not want to walk more than you need to get to School,2

i.e., we would like to minimize qk. You also want to make sure the trajectory3

actually reaches the lecture venue, we write this down as another cost qf (xT).4

We want to pick control inputs (u0, u1, . . . , uT−1) such that5

J(x0;u0, u1, . . . , uT−1) = qf (xT) +

T−1∑
k=0

qk(xk, uk) (5.2)

is minimized. The cost qf (xT) is called the terminal cost, it is high if xT is6

not the lecture room and small otherwise. The cost qk is called the run-time7

cost, it is high for instance if you have to use large control inputs, e.g., xk is a8

climb.9

The optimal control problem Given a system xk+1 = fk(xk, uk), we
want to find control sequences that minimize the total cost J above, i.e.,
we want to solve

J∗(x0) = min
uk∈U,k=0,...,T−1

J(x0;u0, . . . , uT−1) (5.3)

It is important to realize that the function J(x0;u0, . . . , uT−1) depends
upon an entire sequence of control inputs and we need to find them all to
find the optimal cost J∗(x0) of, say reaching the School from your home
x0.

5.2 Dijkstra’s algorithm10

If the state-space X and control-space U are discrete and finite sets, we can11

solve (5.3) as a shortest path problem using very fast algorithms. Consider12

the following picture. This is what would be called a transition graph for a13

deterministic finite-state dynamics.14

Figure 5.1: Transition graph for Dijkstra’s algorithm

The graph has one source node x0. Each node in the graph is xk, each edge15

4

depicts taking a certain control uk. Depending on which control we picks, we1

move to some other node xk+1 given by the dynamics f(xk, uk). Note that2

this is not a transition like that of a Markov chain, everything is deterministic3

in this graph. On each edge we write down the cost4

cost(xk, xk+1) := qk(xk, uk)

where xk+1 = fk(xk, uk) and “close” the graph with a dummy terminal node5

with the cost qf (xT) on every edge leading to an artificial terminal node (sink).6

Minimizing the cost in (5.3) is now the same as finding the shortest path in7

this graph from the source to the sink. The algorithm to do so is quite simple8

and is called Dijkstra’s algorithm after Edsgar Dijkstra who used it around9

1956 as a test program for a new computer named ARMAC (http://www-10

set.win.tue.nl/UnsungHeroes/machines/armac.html).11

1. Let Q be the set of nodes that are currently unvisited; all nodes in the12

graph are added to it at the beginning. S is an empty set. An array called13

dist maintains the distance of every node in the graph from the source14

node x0. Initialize dist(x0) = 0 and dist = ∞ for all other nodes.15

2. At each step, if Q is not empty, pop a node v ∈ Q such that v /∈ S16

with the smallest dist(v). Add v to S. Update the dist of all nodes u17

connected to v. For each u, if18

dist(u) > dist(v) + cost(u, v)

update the distance of u to be dist(v)+cost(u, v). If the above condition19

is not true do nothing.20

The algorithm terminates when the set Q is empty.21

You might know that there are many other variants of Dijkstra’s algorithm,22

e.g., the A∗ algorithm that are quicker to find shortest paths. We will look at23

some of these in the next chapter.

? Shortest path algorithms do not
work if there are cycles in the graph
because the shortest path is not
unique. Are there cycles in the
above graph?

24

? What should one do if the
state/control space is not finite? Can
we still use Dijkstra’s algorithm?The quantity dist is quite special: observe that after Dijkstra’s algo-

rithm finishes running and the set Q is empty, the dist function gives the
optimal cost to go from each node in the graph to the sink node. We
wanted to only find the cost to go from source x0 to the sink node but
ended up computing the cost from every node in the graph to the sink.

5.2.1 Dijkstra’s algorithm in the backwards direction25

We can run Dijkstra’s algorithm in the backwards direction to get the same26

answer as well. The sets Q and S are initialized as before. In this case we27

will let dist(v) denote the distance of a node v to the sink node. The algorithm28

proceeds in the same fashion, it pops a node v ∈ Q, v /∈ S and updates the29

dist of all nodes u connected to v. For each u, if30

dist(u) > dist(v) + cost(u, v)

http://www-set.win.tue.nl/UnsungHeroes/machines/armac.html
http://www-set.win.tue.nl/UnsungHeroes/machines/armac.html
http://www-set.win.tue.nl/UnsungHeroes/machines/armac.html

5

then we update dist(u) to be the right-hand side of this inequality. Running Di-1

jkstra’s algorithm in reverse (from sink to the source) is completely equivalent2

to running it in the forward direction (from source to the sink).3

 If Dijkstra’s algorithm (forwards
or backwards) is run on a graph with
n vertices and m edges, its
computational complexity is
O(m+ n log n) if we use a priority
queue to find the node v ∈ Q, v /∈ S

with the smallest dist. The number
of edges in the transition graph
in Figure 5.1 is m = O(T |X|).

5.3 Principle of Dynamic Programming4

The principle of dynamic programming is a formalization of the idea
behind Dijkstra’s algorithm. It was discovered by Richard Bellman in the
1940s. The idea behind dynamic programming is quite intuitive: it says
that the remainder of an optimal trajectory is optimal.

We can prove this as follows. Suppose that we find the optimal control5

sequence (u∗
0, u

∗
1, . . . , u

∗
T−1) for the problem in (5.3). Our system is de-6

terministic, so this control sequence results in a unique sequence of states7

(x0, x
∗
1, . . . , x

∗
T). Each successive state is given by x∗

k+1 = fk(x
∗
k, u

∗
k) with8

x∗
0 = x0. The principle of optimality, or the principle of dynamic program-9

ming, states that if one starts from a state x∗
k at time k and wishes to minimize10

the “cost-to-go”11

qf (xT) + qk(x
∗
k, uk) +

T−1∑
i=k+1

qi(xi, ui)

over the (now assumed unknown) sequence of controls (uk, uk+1, . . . , uT−1),12

then the optimal control sequence for this truncated problem is exactly (u∗
k, . . . , u

∗
T−1).13

The proof of the above assertion is an easy case of proof by contradic-14

tion: if the truncated sequence were not optimal starting from x∗
k there ex-15

ists some other optimal sequence of controls for the truncated problem, say16

(v∗k, . . . , v
∗
T−1). If so, the solution of the original problem where one takes17

controls v∗k from this new sequence for time-steps k, k + 1, . . . , T − 1 would18

have a lower cost. Hence the original sequence of controls would not have19

been optimal.20

Principle of dynamic programming. The essence of dynamic program-

6

ming is to solve the larger, original problem by sequentially solving the
truncated sub-problems. At each iteration, Dijkstra’s algorithm constructs
the functions

J∗
T (xT), J

∗
T−1(xT−1), . . . , J

∗
0 (x0)

starting from J∗
T and proceeding backwards to J∗

T−1, J
∗
T−2 The func-

tion J∗
T−k(v) is just the array dist(v) at iteration k of the backwards

implementation of Dijkstra’s algorithm. Mathematically, dynamic pro-
gramming looks as follows.

1. Initialize J∗
T (x) = qf (x) for all x ∈ X .

2. For iteration k = T − 1, . . . , 0, set

J∗
k (x) = min

uk∈U

{
qk(x, uk) + J∗

k+1(fk(x, uk))
}

(5.4)

for all x ∈ X .

After running the above algorithm we have the optimal cost-to-go J∗
0 (x)1

for each state x ∈ X , in particular, we have the cost-to-go for the initial state2

J∗
0 (x0). If we remember the minimizer u∗

k in (5.4) while running the algorithm,3

we also have the optimal sequence (u∗
0, u

∗
1, . . . , u

∗
T−1). The function J∗

0 (x)4

(often shortened to simply J∗(x)) is the optimal cost-to-go from the state5

x ∈ X .6

Again, we really only wanted to calculate J∗
0 (x0) but had to do all this7

extra work of computing J∗
k for all the states.8

Curse of dimensionality What is the complexity of running dynamic pro-9

gramming? The cost of the minimization over U is O(|U |), it is a bunch10

of comparisons between floats. The number of operations at each iteration11

for setting the values J∗
k (x) for all x ∈ X is |X|. So the total complexity is12

O(T |X| |U |).13

The terms |X| and |U | are often the hurdle in implementing dynamic14

programming or any variant of it. Think of the grid-world in Problem 1 in15

HW 1, it had 200×200 cells which amounts to |X| = 40, 000. This may16

seem a reasonable number but it explodes quickly as the dimensionality of the17

state-space grows. For a robot manipulator with six degrees-of-freedom, if we18

discretize each joint angle into 5 degree cells, the number of states is |X| ≈19

140 billion. The number of states |X| is exponential in the dimensionality20

of the state-space and dynamic programming quickly becomes prohibitive21

beyond 4 dimensions or so. Bellman called this the curse of dimensionality.22

Cost of dynamic programming is linear in the time-horizon Notice a very23

important difference between (5.4)24

J∗
k (x) = min

uk∈U

{
qk(x, uk) + J∗

k+1(fk(x, uk))
}

7

for iterations i = T − 1, . . . , 0 and (5.3)1

J∗(x0) = min
uk∈U,k=0,...,T−1

J(x0;u0, . . . , uT−1).

The latter has a minimization over a sequence of controls (u0, u1, . . . , uT−1)2

while the former has a minimization over only the control at time k, uk over T3

iterations. The former is much much easier to solve because it is a sequence of4

O(T) smaller optimization problems: it is really easy to compute minuk∈U)5

for each state x separately than to solve the gigantic minimization problem6

in (5.3) because in the latter case, the variable of optimization is the entire7

control trajectory and has size |U |T .8

? The principle of dynamic
programming gives us a way to
solve an optimization problem (5.3)
over a really large space (the space
of all control trajectories) using a
linear in time-horizon number of
optimization problems (5.4). Can
we split any optimization problem in
sub-problems like this?

Dynamic programming and Viterbi’s algorithm We have seen the princi-9

ple of dynamic programming in action before in Viterbi’s algorithm in Chapter10

2. The transition graph in Figure 5.1 is the same as the Trellis graph for11

Viterbi’s algorithm, the run-time cost was12

qk(xk, uk) := − log P(Yk | Xk)− log P(Xk+1 | Xk)

and instead of a terminal cost qf , we had an initial cost − log P(X1). Viterbi’s13

algorithm computed the most likely path given observations of the HMM, i.e.,14

the path (X1, . . . , XT) that maximizes the probability P(X1, . . . , XT | Y1, . . . , YT)15

is simply the solution of dynamic programming for the Trellis graph.16

? How should one modify dynamic
programming if we have a
non-additive cost, e.g., the runtime
cost at time k given by qk is a
function of both xk and xk−1?

5.3.1 Q-factor17

The quantity18

Q∗
k(x, u) := qk(x, u) + J∗

k+1(fk(x, u))

is called the Q-factor. It is simply the expression that is minimized in the19

right-hand side of (5.4) and denotes the cost-to-go if control u was picked at20

state x (corresponding to cost qk(x, u)) and the the optimal control trajectory21

was followed after that (corresponding to cost J∗
k (fk(x, u)) from state x′ =22

fk(x, u)). This nomenclature was introduced by Watkins in his thesis.23

Q-factors and the cost-to-go are equivalent ways of thinking about dynamic24

programming. Given the Q-factor, we can obtain the cost-to-go J∗
k as25

J∗
k (x) = min

uk∈U
Q∗

k(x, uk). (5.5)

which is precisely the dynamic programming update (by definition) in (5.4).26

We can also write dynamic programming completely in terms of Q-factors as27

follows.28

Dynamic programming written in terms of the Q-factor

8

1. Initialize Q∗
T (x, u) = qf (x) for all x ∈ X and all u ∈ U .

2. For iteration k = T − 1, . . . , 0, set

Q∗
k(x, u) = qk(x, u) + min

u′∈U
Q∗

k+1(fk(x, u), u
′). (5.6)

for all x ∈ X and all u ∈ U .

As yet, it may be seem unnecessary to think of the Q-factor (which is a
larger array with |X| × |U | entries) instead of the cost-to-go (which only
has |X| entries in the array).

Value function The following terminology is commonly used in the
literature

value function ≡ cost-to-go J∗(x)

action-value function ≡ Q-factor Q∗(x, u).

Since the two functions are equivalent, we will call both as “value func-
tions”. The difference will be clear from context.

5.4 Stochastic dynamic programming: Value Iter-1

ation2

Let us now see how dynamic programming looks for a Markov Decision3

Process (MDP). As we saw in Chapter 3, we can think of MDPs as stochastic4

dynamical systems denoted by5

xk+1 = fk(xk, uk) + ϵk; x0 is given.

We will assume that we know the statistics of the noise ϵk at each time-6

step (say it is a Gaussian). Stochastic dynamical systems are very different7

from deterministic dynamical systems, given the same sequence of controls8

(u0, . . . , uT−1), we may get different state trajectories (x0, x1, . . . , xT) de-9

pending upon the realization of noise (ϵ0, . . . , ϵT−1). How should we find10

a good control trajectory then? One idea is to modify (5.3) to minimize the11

expected value of the cost over all possible state-trajectories12

J(x0;u0, . . . , uT−1) = E
(ϵ0,...,ϵT−1)

[
qf (xT) +

T−1∑
k=0

qk(xk, uk)

]
(5.7)

Suppose we minimized the above expectation and obtained the value function13

J∗(x0) and the optimal control trajectory (u∗
0, . . . , u

∗
T−1). As the robot starts14

executing this trajectory, the realized versions of the noise ϵk might differ a lot15

from their expected value, and the robot may find itself in very different states16

xk than the average-case states considered in (5.10).

 Draw the picture of a
one-dimensional stochastic
dynamical system (random walk on
a line) and see that the realized
trajectory of the system can be very
different from the average trajectory.

17

9

Feedback controls The concept of feedback control is a powerful way to1

resolve this issue. Instead of seeking u∗
k ∈ U as the solutions of (5.10), we2

instead seek a function3

uk(x) : X 7→ U (5.8)

that maps the state-space X to a control U . Effectively, given a feedback4

control uk(x) the robot knows what control to apply at its current realized state5

xk ∈ X , namely uk(xk), even if the realized state xk is very different from6

the average-case state. Feedback controls are everywhere and are critical to7

using controls in the real world. For instance, when you tune the shower faucet8

to give you a comfortable water temperature, you are constantly estimating9

the state (feedback using the temperature) and turning the faucet accordingly.10

Doing this without feedback would leave you terribly cold or scalded. We will11

denote the space of all feedback controls uk(·) that depend on the state x ∈ X12

by13

uk(·) ∈ U(X).

Control policy A sequence of feedback controls14

π = (u0(·), u1(·), . . . , uT−1(·)). (5.9)

is called a control policy. This is an object that we will talk about often. It is15

important to remember that a control policy is set of controllers (usually feed-16

back controls) that are executed at each time-step of a dynamic programming17

problem.18

The stochastic optimal control problem finds a sequence of feedback
controls (u0(·), u1(·), . . . , uT (·)) that minimizes

J(x0;u0(·), . . . , uT−1(·)) = E
(ϵ0,...,ϵT−1)

[
qf (xT) +

T−1∑
k=0

qk(xk, uk(xk))

]
.

The value function is given by

J∗(x0) = min
uk(·)∈U(X), k=0,...,T−1

J(x0;u0(·), . . . , uT−1(·)) (5.10)

The optimal sequence of feedback controls (in short, the optimal control
trajectory) is the one that achieves this minimum.

 All this sounds very tricky and
abstract but you will quickly get
used to the idea of feedback control
because it is quite natural. You can
think of feedback control as being
analogous to the innovation term in
the Kalman filter K(yk − Cµk+1|k)

which corrects the estimate µk+1|k
to get a new estimate µk+1|k+1

using the current observation yk.
Filtering would not work at all if the
innovation term did not depend upon
the actual observation yk and only
depended upon some average
observation.

Dijkstra’s algorithm no longer works, as is, if the edges in the graph are19

stochastic but we can use the principal of dynamic programming to write the20

solution for the stochastic optimal control problem. The idea remains the same,21

we compute a sequence of cost-to-go functions J∗
T (x), J

∗
T−1(x), . . . , J

∗
0 (x),22

and in particular J∗
0 (x0), proceeding backwards.23

Finite-horizon dynamic programming for stochastic systems.

10

1. Initialize J∗
T (x) = qf (x) for all x ∈ X .

2. For all times k = T − 1, . . . , 0, set

J∗
k (x) = min

uk(·) ∈ U(X)

{
qk(x, uk(x)) + E

ϵk

[
J∗
k+1(fk(x, uk(x)) + ϵk)

]}
(5.11)

for all x ∈ X .

Just like (5.4), we solve a sub-problem for one time-instant at each iteration.1

But observe a few importance differences in (5.11) compared to (5.4).2

1. There is an expectation over the noise ϵk in the second term in the curly3

brackets. The second term in the curly brackets is the average of the4

cost-to-go of the truncated sub-problems from time k + 1, . . . , T over5

all possible starting states x′ = fk(xk, uk(xk)) + ϵk. This makes sense,6

after taking the control uk(xk), we may find the robot at any of the7

possible states x′ ∈ X depending upon different realizations of noise8

ϵk and the cost-to-go from xk is therefore the average of the cost-to-9

go from each of those states (according to the principal of dynamic10

programming).11

2. The minimization in (5.11) is performed over a function12

U(X) ∋ uk(·) : X 7→ U.

Since our set of states and controls is finite, this involves finding a table13

of size |X| × |U | for each iteration. In (5.4), we only had to search over14

a set of values uk ∈ U of size |U |. At the end of dynamic programming,15

we have a sequence of feedback controls16

(u∗
0(·), u∗

1(·), . . . , u∗
T−1(·)).

Each feedback control u∗
k(x) tells us what control the robot should pick17

if it finds itself at a state x at time k.18

3. If we know the dynamical system, not in its functional form xk+1 =19

fk(xk, uk) + ϵk but rather as a transition matrix P(xk+1 | xk, uk) (like20

we had in Chapter 2) then the expression in (5.11) simply becomes21

J∗
k (x) = min

uk(·) ∈ U(X)

{
qk(x, uk(x)) + E

x′∼P(· | xk,uk(xk))

[
J∗
k+1(x

′))
]}

(5.12)

? Why should we only care about
minimizing the average cost in the
objective in (5.10)? Can you think
of any other objective we may wish
to use?

Computational complexity The form in (5.12) helps us understand the22

computational complexity, each sub-problem performs |X|×|X|×|U | amount23

of work and therefore the total complexity of stochastic dynamic programming24

is25

O(T |X|2|U |).

11

Naturally, the quadratic dependence on the size of the state-space is an even1

bigger hurdle while implementing dynamic programming for stochastic sys-2

tems.3

5.4.1 Infinite-horizon problems4

In the previous section, we put a lot of importance on the horizon T for5

dynamic programming. This is natural: if the horizon T changes, say you are6

in a hurry to get to school, the optimal trajectory may take control inputs that7

incur a lot of runtime cost simply to reach closer to the goal state (something8

that keeps the terminal cost small). In most, real-world problems, it is not very9

clear what value of T we should pick. We therefore formulate the dynamic10

programming problem as something that also allows a trajectory of infinite11

steps but also encourages the length of the trajectory to be small enough in12

order to be meaningful. Such problems are called infinite-horizon problems13

(T → ∞).14

Stationary dynamics and run-time cost We think of infinite-horizon prob-15

lems in the following way: at any time-step, the length of the trajectory16

remaining for the robot to traverse is infinite. It helps in this case to solve a17

restricted set of problems where the system dynamics and run-time cost do18

not change as a function of time (they only change as a function of the state19

and the control). We will set20

q(x, u) ≡ qk(x, u),

f(x, u) ≡ fk(x, u)

for all x ∈ X and u ∈ U . Such a condition is called stationarity. If the system21

is stochastic, we also require that the distribution of noise ϵk does not change22

as a function of time (it could change in (5.11) but we did not write it so). The23

infinite-horizon setting is never quite satisfied in practice but it is a reasonable24

formulation for problems that run for a long length of time.25

Infinite-horizon objective The objective that we desire be minimized by an26

infinite-horizon control policy27

π = (u0(·), u1(·), . . . , uT (·), uT+1(·), . . . ,)

is defined in terms of an asymptotic limit28

J(x0;π) = lim
T→∞

E
(ϵ0,...,ϵT−1)

[
T−1∑
k=0

γkq(xk, uk(xk))

]
. (5.13)

and we again wish to solve for the optimal cost-to-go29

J∗(x0) = argmin
π

J∗(x0;π). (5.14)

Thus the infinite horizon costs of a policy is the limit of its finite horizon30

costs as the horizon tends to infinity. Notice a few important differences when31

12

compared to (5.7).1

1. The objective is a limit, it is effectively the cost of the trajectory as it is2

allowed to stretch for a larger and larger time-horizon.3

2. There is no terminal cost in the objective function; this makes sense4

because an explicit terminal state xT does not exist anymore. In infinite-5

horizon problems, you should think of the terminal cost as being incor-6

porated inside the run-time cost q(x, u) itself, e.g., move the robot to7

minimize the fuel used at this time instant but also move it in a way that8

it reaches the goal at some time in the future.9

3. Discount factor— Depending upon what controls we pick, the summa-10

tion11
T∑

k=0

q(xk, uk(xk))

can diverge to infinity as T → ∞ and thereby a meaningful solution to12

the infinite-horizon problem may not exist. In order to avoid this, we13

use a scalar14

γ ∈ (0, 1)

known as the discount factor in the formulation. It puts more em-15

phasis on costs incurred earlier in the trajectory than later ones and16

thereby encourages the length of the trajectory to be small. Notice that17 ∑∞
k=0 α

k = 1/(1 − α) if |a| < 1, so if the cost |q(xk, uk(xk))| < 1,18

then we know that the objective in (5.13) always converges.19

Stochastic shortest path problems It is important to remember that the20

discount factor is chosen by the user, no one prescribes it. There is also a21

class of problems where we may choose γ = 1 but in these cases, there should22

exist some essentially terminal state in the state space where we can keep23

taking a control such that the runtime cost q(x, u) is zero. Otherwise, the24

objective will diverge. The goal region in the grid-world problem could be25

an example of such state. Such problems are called stochastic shortest path26

problems because the time-horizon is not actually infinite, we just do not27

know how many time-steps it will take for the robot to go to the goal location.28

Naturally, stochastic shortest path problems are a generalization of the shortest29

path problem solved by Dijkstra’s algorithm. The algorithms we discuss next30

will work for such problems.31

Stationary policy It seems a bit cumbersome to carry around an infinitely32

long sequence of feedback controls in infinite-horizon problems. Since there33

is an infinitely-long trajectory yet to be traveled at any given time-step, the34

optimal control action that we take should only depend upon the current state.35

This is indeed true mathematically. If J∗(x) is the optimal cost-to-go in the36

infinite-horizon problem starting from a state x, using the principle of dynamic37

programming, we should also have that we can split this cost as the best38

one-step cost of the current state x added to the optimal cost-to-go from the39

state f(x, u) realized after taking the optimal control u:40

J∗(x) = min
u(x)∈U(X)

E
ϵ
[q(x, u(x)) + γJ∗(f(x, u(x)) + ϵ)] . (5.15)

13

We will study this equation in depth soon. But if we find the minimum at1

u∗(x) for this equation, then we can run the policy2

π∗ = (u∗(·), u∗(·), . . . , u∗(·), . . .)

for the entire infinite horizon. Such a policy is called a stationary policy. Intu-3

itively, since the future optimization problem (tail of dynamic programming)4

from a given state x looks the same regardless of the time at which we start,5

optimal policies for the infinite-horizon problem can be found even inside the6

restricted class of policies where the feedback control does not change with7

time k.8

We will almost exclusively deal with stationary policies in this course.9

5.4.2 Dynamic programming for infinite-horizon problems10

We wish to compute the optimal cost-to-go of starting from a state x and11

taking an infinitely long trajectory that minimizes the objective (5.13). We will12

exploit the equation in (5.15) and develop an iterative algorithm to compute13

the optimal cost-to-go J∗(x).14

Value Iteration. The algorithm proceeds iteratively to maintain a se-
quence of approximations

∀x ∈ X, J (0)(x), J (1)(x), J (2)(x), . . . ,

to the optimal value function J∗(x). Such an algorithm is called “value
iteration”.

1. Initialize J (0)(x) = 0 for all x ∈ X .
2. Update using the Bellman equation at each iteration, i.e., for i =

1, 2, . . . , N , set

J (i+1)(x) = min
u∈U

E
ϵ

[
q(x, u) + γJ (i)(f(x, u) + ϵ)

]
. (5.16)

for all x ∈ X until the value function converges at all states, e.g.,

∀x ∈ X, |J (i)(x)− J (i+1)(x)| < small tolerance.

3. Compute the feedback control and the stationary policy π∗ =

(u∗(·), . . . ,) corresponding to the value function estimate J (N) as

u∗(x) = argmin
u∈U

E
ϵ

[
q(x, u) + γJ (N)(f(x, u) + ϵ)

]
(5.17)

for all x ∈ X .

 If the dynamics is given as a
transition matrix, we can replace the
expectation over noise Eϵ as an
expectation over the next state
x′ ∼ P(x′ | x, u(x)) in (5.16) to run
value iteration. Everything else
remains the same

Let us observe a few important things in the above sequence of updates.15

First, at each iteration, we are updating the values of all |X| states. This16

involves |X|2|U | amount of work per iteration. How many such iterations N17

14

do we need until the value function converges? We will see in a bit, that1

∀x ∈ X, J∗(x) = lim
N→∞

J (N)(x).

Again, we really only wanted to compute the cost-to-go J∗(x0) from some2

initial state x0 but computed the value function at all states x ∈ X .3

Q-Iteration Just like we wrote dynamic programming in terms of the Q-4

factor, we can also write value iteration to find the optimal Q-factor Q∗(x, u),5

i.e., the optimal cost-to-go of the infinitely-long trajectory that starts at state x,6

takes a control u at the first time-step and therefore follows the optimal policy.7

1. We can again initialize Q(0)(x, u) = q(x, u) for all x ∈ X and u ∈ U .8

2. The Bellman update in terms of the Q-factor becomes9

Q(i+1)(x, u) = E
ϵ

[
q(x, u) + γ min

u′∈U
Q(i)(f(x, u) + ϵ, u′)

]
(5.18)

and update this for all x ∈ X and all u ∈ U .10

3. The feedback control is the control at that state that minimizes the11

Q-factor12

∀x ∈ X, u∗(x) = argmin
u′∈U

Q(N)(x, u′) (5.19)

and the control policy is13

π∗ = (u∗, u∗, . . . ,)

Notice how we can directly find the u′ that has the smallest value of14

Q(N) and set it to be our feedback control.15

5.4.3 An example16

Let us consider a grid-world example. A robot would like to reach a goal17

region (marked in green) and we are interested in computing the cost-to-go18

from different parts of the domain. Gray cells are obstacles that the robot19

cannot enter. At each step the robot can move in four directions (north, east,20

west, south) with a small dynamics noise which keeps it at the original cell21

in spite of taking the control. These pictures are when the run-time-cost is22

negative, i.e., the robot gets a certain reward q(x, u) for taking the control u23

at cell x. Dynamic programming (and value iteration) also works in this case24

and we simply replace all minimizations by maximizations in the equations.25

26

15

1

2

3

The final value function after 50 iterations looks as follows.4

5

5.4.4 Some theoretical results on value iteration6

We list down some very powerful theoretical results for value iteration. These7

results are valid under a very general set of conditions and make value iteration8

16

work for a large number of real-world problems; they are at the the heart of all1

modern algorithms. We will not derive them (it is easy but cumbersome) but2

you should commit them to memory and try to understand them intuitively.3

Value iteration converges. Given any initialization J (0)(x) for all x ∈ X ,4

the sequence of value iteration estimates J (i)(x) converges to the optimal cost5

∀x ∈ X, J∗(x) = lim
N→∞

J (N)(x)

The solution is unique. The optimal cost-to-go J∗(x) of (5.14) satisfies the6

Bellman equation7

J∗(x) = min
u∈U

E
ϵ
[q(x, u) + γJ∗(f(x, u) + ϵ)] .

The function J∗ is also the unique solution of this equation. In other words, if8

we find some other function J ′(x) that satisfies the Bellman equation, we are9

guaranteed that J ′ is indeed the optimal cost-to-go.10

Policy evaluation: Bellman equation for a particular policy. Consider11

a stationary policy π = (u(·), u(·), . . .). The cost of executing this policy12

starting from a state x, is J(x;π) from (5.13), also denoted by Jπ(x) for short.13

It satisfies the equation14

Jπ(x) = q(x, u(x)) + γ E
ϵ
[Jπ(f(x, u(x)) + ϵ)] (5.20)

and is also the unique solution of this equation. In other words, if we have a15

policy in hand, and wish to find the cost-to-go of this policy, i.e., “evaluate the16

policy” we can initialize J (0)(x) = 0 for all x ∈ X and perform the sequence17

of iterative updates to this initialization18

J (i+1)(x) = q(x, u(x)) + γ E
ϵ

[
J (i)(f(x, u(x)) + ϵ)

]
. (5.21)

As the number of updates goes to infinity, the iterate converges to Jπ(x)19

∀x ∈ X, Jπ(x) = lim
N→∞

J (N)(x).

Policy evaluation is equivalent to solving a linear system of equations.20

The min operation in (5.16) or (5.18) is particularly problematic in imple-21

menting value iteration. As compared to it, observer that the corresponding22

equation for policy equation (5.20) does not have min operation. This allows23

us to write the updates in (5.21) as the solution of a linear system of equations.24

Since we are in a finite state-space, we can write the cost-to-go as a large25

vector26

Jπ := [Jπ(x1), J
π(x2), . . . , J

π(xn)]
⊤

where n is the number of total states in the state-space. We create a similar27

vector for the run-time cost term28

qu := [q(x1, u(x1)), q(x2, u(x2)), . . . , q(xn, u(xn))] .

17

We know that the expectation over noise ϵ is equivalent to an expectation over1

the next state of the system, let us rewrite the dynamics part f(x, u(x)) + ϵ in2

terms of the Markov transition matrix3

Tx,x′ = P(x′ | x, u(x))

as4

γ E
ϵ
[Jπ(f(x, u(x)) + ϵ)] = γ

∑
x′

Tx,x′Jπ(x′) = γ TJπ

to get a linear system5

Jπ = qu + γTJπ (5.22)

which can be solved easily for Jπ = (I − γ T)
−1

qu to get the cost-to-go of a6

particular control policy π.7

5.5 Stochastic dynamic programming: Policy It-8

eration9

Value iteration converges exponentially quickly, but asymptotically. The10

number of states |X| = n is finite and so is the number of controls |U |. This11

seems very funny, one would expect that we should be able to find the optimal12

cost J∗(x) in finite time if the problem is finite, after all we need to find |X|13

numbers J∗(x1), . . . , J
∗(xn). This intuition is rightly placed indeed and in14

this section, we will discuss an algorithm called policy iteration, which is a15

more efficient version of value iteration.16

The idea behind policy iteration is quite simple: given a stationary policy17

for an infinite-horizon problem π = (u(·), . . . , u(·)), we can evaluate this18

policy to obtain its cost-to-go Jπ(x). If we now set the feedback control to be19

ũ(x) = argmin
u∈U

E
ϵ
[q(x, u) + γJπ(f(x, u) + ϵ)] , (5.23)

i.e., we construct a new control policy that executes this new control ũ(·) at20

the first step and thereafter executes the old feedback control u(·)21

π(1) = (ũ(·), u(·), . . .),

then the cost-to-go of policy π(1) is always better:22

∀x ∈ X, Jπ(1)

(x) ≤ Jπ(x).

? Why? It is simply because (5.23)
is at least an improvement upon the
feedback control u(·). The
cost-to-go cannot improve only if
the old feedback control u(·) where
optimal to begin with.

We don’t have to stop at one time-step, we can patch the old policy at the first23

two time-steps to get24

π(2) = (ũ(·), ũ(·), . . .),

and have by the same logic25

∀x ∈ X, Jπ(2)

(x) ≤ Jπ(1)

(x) ≤ Jπ(x).

18

If we build a new stationary policy1

π̃ = (ũ(·), ũ(·), ũ(·), . . .), (5.24)

we similarly have2

∀x ∈ X, J π̃(x) ≤ Jπ(x).

This suggests an iterative way to compute the optimal stationary policy π∗
3

starting from some initial stationary policy (i.e., implicitly a feedback con-4

troller).5

Policy Iteration The algorithm proceeds to maintain a sequence of sta-
tionary policies

π(k) = (u(k)(·), u(k)(·), u(k)(·), . . .)

that converges to the optimal policy π∗.
Initialize u(0)(x) = 0 for all x ∈ X . This gives the initial stationary

policy π(0). At each iteration k = 1, . . . , we do the following two things.

1. Policy evaluation Use multiple iterations of (5.21) to evaluate the
old policy π(k). Initialize J (0)(x) = 0 for all x ∈ X and iterate
upon

J (i+1)(x) = q(x, u(i)(x)) + γ E
ϵ

[
J (i)(f(x, u(i)(x) + ϵ))

]
for all x ∈ X until convergence. In practice, we always use the
linear system of equations in (5.22) to solve for Jπ(k)

directly.
2. Policy improvement Update the feedback controller using (5.23)

to be

u(k+1)(x) = argmin
u∈U

E
ϵ

[
q(x, u) + γJπ(k)

(f(x, u) + ϵ)
]

for all x ∈ X and compute the updated stationary policy

π(k+1) = (u(k+1)(·), u(k+1)(·), . . .)

The algorithm terminates when the controller does not change at any
state, i.e., when the following condition is satisfied

∀x ∈ X, u(k+1)(x) = u(k)(x).

Just like value iteration converges to the optimal value function, it can be6

shown that policy iteration produces a sequence of improved policies7

∀x ∈ X, Jπ(k+1)(x) ≤ Jπ(k)(x)

19

and converges to the optimal cost-to-go1

∀x ∈ X, J∗(x) = lim
N→∞

Jπ(N)(x).

The key property of policy iteration is that we need a finite number of updates2

to the policy to find the optimal policy. Notice that this does not mean always3

mean that we are doing less work than value iteration in policy iteration. Ob-4

serve that the policy evaluation step in the policy iteration algorithm performs5

a number of Bellman equation updates. But typically, it is observed in practice6

that policy iteration is much cheaper computationally than value iteration.7

5.5.1 An example8

Let us go back to our example for value iteration. In this case, we will visualize9

the controller u(k)(x) at each cell x as arrows pointing to some other cell. The10

cells are colored by the value function for that particular stationary policy.11

12

13

20

1

2

The evaluated value for the policy after 4 iterations is optimal, compare3

this to the example for value iteration.4

5

	Dynamic Programming
	Formulating the optimal control problem
	Dijkstra's algorithm
	Dijkstra's algorithm in the backwards direction

	Principle of Dynamic Programming
	Q-factor

	Stochastic dynamic programming: Value Iteration
	Infinite-horizon problems
	Dynamic programming for infinite-horizon problems
	An example
	Some theoretical results on value iteration

	Stochastic dynamic programming: Policy Iteration
	An example

